

CHAPTER 1 BASIC Programming
Concepts
Programming is all about getting the computer to do what you
want it to do. The key is knowing how to tell the computer in a
way it will understand. That’s where programming languages
come in. There are many different programming languages that
are designed to make the communication easier in different situ-
ations.

In this chapter you will learn about the BASIC programming lan-
guage, how it ‘s different in REALbasic and the fundamentals of
programming.

Contents
• Data Types
• Storing Values in Properties and Variables
• Executing Instructions with Methods
REALbasic Developer’s Guide 1

BASIC Programming Concepts

2

• Executing Instructions Repeatedly with Loops
• Decision Making

BASIC versus REALbasic

The language BASIC was created in the 1960’s for the purpose of
teaching people programming. Most of what made other lan-
guages difficult to master, was removed from BASIC to make
learning it easier. In fact, BASIC is an acronym which stands for
Beginners All-Purpose Symbolic Instruction Code.

BASIC for a long time was considered less powerful than other
languages but this was mostly due to the way the it was imple-
mented rather than the language itself. Spoken languages
wouldn’t be considered to be very powerful if you could only
speak one word every 10 minutes for example. Computers actu-
ally only understand two things, 1 and 0. That’s it. that’s all the
know. The rest of what a computer does all breaks down to that
fundamental concept. These 1’s and 0’s that computers under-
stand are referred to as Machine Language. Most versions of
BASIC have used an interpreter program to execute the code.
This means that each time a program ran, the BASIC interpreter
had to turn the BASIC code into Machine Language. Other lan-
guages had compilers which are special programs that translate
the programing language into Machine Language all at once
which makes them execute faster because the constant interpre-
tation is removed.

REALbasic has a compiler built-in to it. That means your code is
always running as fast as possible. BASIC is a traditional program-
ming language that starts with the first line programming code
and continues until the last line. REALbasic is a modern, object-
Building a User Interface

Storing Values in Properties and Variables

oriented version of BASIC. If you are new to programming that
might not mean much now but it will. REALbasic takes the sim-
plicity of the BASIC language and adds the power of modern
programming through it’s object-oriented implementation and
compiler. Also, most programming languages require you to
know quite a bit about how to communicate with the computer’s
operating system. REALbasic abstracts you from all of that mak-
ing it easier for you to learn and easier to run your application on
computers running operating systems that are different from the
one you created your application on.

Storing Values in Properties and
Variables
When you need to store information so you can access it again
even after you have shut off your computer, you tell you com-
puter to store the information in a document. When a computer
needs to store information temporarily, it’s stored in the com-
puter’s memory. The computer’s memory is like a series of orga-
nized boxes. Each box has a location in memory with an address
that is used to locate it. These locations are given names to make
them easier to work with. Depending on how these memory
locations are used, they are called Variables and Properties.

What are Properties?
The values that make up the description of an object like a win-
dow are called Properties. The title of a window is a property. The
width of the window is a property. When a window is opened,
these properties are copied into memory. You can access them
using their names. You can get values from them and you can
store new values in them. For example, if you wanted the title of
BASIC Programming Concepts 3

BASIC Programming Concepts

4

a window to change when the user clicks a button, you would
set the title property of the window to the new value. Each prop-
erty can hold a certain type of data. Some properties store text
(like a window title) while others store numbers (like the win-
dow’s width property). Later in this chapter, you will learn how to
assign values to properties and how to get the values that are
stored in properties.

Variables
Sometimes you will need to store a value that isn’t related directly
to an object like a window or a button. In this case you use a vari-
able. A variable is just like a property but it isn’t directly related to
any particular object. Later in this chapter, you will learn how to
create variables, assign values to them and get values from them.

Data Types
To make programming code execute faster and to provide pow-
erful commands that save you time when programming, comput-
ers have to be able to make certain assumptions about the
information you give them. For example, when you give a com-
puter a piece of information, the computer needs to know if it’s a
number, a string of characters, a date, etc. If you didn’t tell the
computer what kind of data you are giving it, it wouldn’t know
whether you meant 1 plus 1 to be 2 or 11. In this example, telling
the computer that you are giving it numbers will result in 2. Tell-
ing it you are giving it simply a string of typed characters will
result in 11. There are many data types that REALbasic under-
stand but there are five data types that are by far the most com-
mon and they are String, Integer, Single, Double and Boolean.
Building a User Interface

Storing Values in Properties and Variables

String

A string is just series (or string) of characters. Basically any kind of
information can be stored as a string. “Jannice”, “3/17/98”,
“45.90” are all examples of strings. You might be thinking “Hey,
those last two don’t look like strings” but they are. When you
place quotes around information in your code, you are telling
REALbasic to look at the data as just a string of characters and
nothing more. The maximum length of a string is based only on
available memory.

You can concatenate two strings together by adding them
together with the addition symbol (+). For example “Big” +
“Dog” would result in the string “BigDog”. That is really the
extent of the mathematics you can perform on strings. However,
REALbasic has many built-in functions that make processing
strings easy.

Integer

An Integer is a whole number between approximately -2 billion
and +2 billion. In other programming languages, REALbasic’s
Integer type is called a Long Integer or just a Long. Because inte-
gers are numbers, you can perform mathematical calculations on
them. Unlike strings, integers do not have quotes around them in
your code. An Integer value uses 4 bytes of memory.

Single

A Single is a number that can contain a decimal value. There is no
practical limit as their is with Integer. In other languages, REALba-
sic’s Single may be referred to as a single precision real number.
Because Singles are numbers, you can perform mathematical cal-
culations on them. Single numbers use 4 bytes of memory.
BASIC Programming Concepts 5

BASIC Programming Concepts

6

Double

A Double is a number that can contain decimal value. Unlike Inte-
gers, Doubles have no limit to the range of numbers they can
hold. In other languages, REALbasic’s Double may be referred to
as a double precision real number. Because Doubles are numbers,
you can perform mathematical calculations on them. Doubles use
8 bytes of memory. The PowerPC microprocessor converts Singles
to Doubles before performing calculations on them so you are
probably better off using a Double instead of a Single.

Boolean

Boolean means true or false. Boolean values are false by default
but can be set to true using REALbasic’s True function and back
to false using the False function. Some of the properties of
objects in REALbasic are boolean values. For example, most of
the controls have an Enabled property that is boolean.

Other Data Types

There are many other data types. You will learn about these in
the next chapter.

Changing a Value From One Data Type to Another
There may be times when you need to change a value from one
data type to another. This is usually because you want to use the
value with something that is designed to work with a different
data type. For example, you might want to include a number in
the title of a window. The title of a window is a string, not a
number. Consequently, if you try to assign a number to the title
of a window, REALbasic will display an error message when you
run your application. The error will tell you that the two data
types are not compatible (they are different). Since the window
Building a User Interface

Storing Values in Properties and Variables

title is a string, you will need to change the number into a string
before you can assign it to the window title.

Fortunately, REALbasic has a built-in function called Str (which
stands for String) that can change a number into a string. See
“Str Function” on page 101 of the Language Reference for more
information. There is also a built-in function called Val (which is
short for Value) that changes strings into numbers. See “Val
Function” on page 113 of the Language Reference for more
information.

Assigning Values to Properties
The basic syntax for assigning a value is:

objectName.propertyName=value

For example, if you have a pushbutton called pushbutton1, and
you want to set it’s caption property to “OK”, you would use the
following code:

pushbutton1.caption="OK"

You can read this as change pushbutton1’s caption property to
“OK”. This syntax is used when you want a control in a window
to change a property of a control in the same window. If you
want a control to change a property of a control in another open
window, you must include the target window’s name (not title) in
the syntax. For example, say you have two open windows whose
names are window1 and window2 respectively. You want a push-
button on window1 to set the value of pushbutton1’s caption on
window2 to “OK”. The syntax would look like this:

window2.pushbutton1.caption="OK"
BASIC Programming Concepts 7

BASIC Programming Concepts

8

If you didn’t specify the window, REALbasic would implicitly
assume you meant the control called pushbutton1 in the window
that contains the object executing the code. If you specify a win-
dow that is not open, REALbasic will open the window then
make the change. If you have more than one copy of the window
open that contains the control you are trying to change, this syn-
tax won’t work because you won’t be able to tell REALbasic
which copy of the window you are referring to. You will learn
how to deal with this issue in the next chapter.

If a control is going to change a property of it’s own window, the
window name is not required. The window name is implicit. For
example, if you wanted a pushbutton when clicked to change it’s
window’s title property to “Hello World”, you would use this syn-
tax:

title="Hello World"

Getting Values From Properties
You can get a value from a property in almost the same way you
store values in properties. The only different is that the target of
the value (where you want the value of the property stored) goes
on the left side of the equals sign and the object and property
names go on the right. For example, if you had a variable named
X and you wanted to assign pushbutton1’s caption to it, the syn-
tax would be:

x=pushbutton1.caption

And just as in setting properties, you can get the property of a
control in another window by including the window’s name. For
example, if you want to assign the variable x to window2’s
pushbutton1 caption property, you would use this syntax:

x=window2.pushbutton1.caption
Building a User Interface

Storing Values in Properties and Variables

And just like setting properties, if you include only the property
name, REALbasic assumes you are referring to a property of the
window that contains the control that is executing the code. For
example, if you have a pushbutton called pushbutton1 and you
want it to assign the window title to the variable x when it is
clicked, you would use this syntax:

x=title

Getting and Setting Values in Variables
When you need to store a value that is not associated with an
object (the way a property is associated with a control or win-
dow), you use a variable. A variable is nothing more than a loca-
tion in memory to store a value. Variables have names just like
properties do. The name you give a variable should describe the
purpose of the variable. Say you wanted to calculate the number
of days old a person is based on the year they were born. You
might have a variable called “Days” to keep track of that infor-
mation. Variable names can be any length but must begin with a
letter and can contain only alphanumeric characters (A-Z, a-z, 0-
9). Variable names are case-insensitive so REALbasic sees x and X
as the same variable.

You can put values in variables and get values from variables in
the same way you do with properties. To get a value from a vari-
able, it must be on the right side of the assignment operator (=).
Say for example, you wanted to set the caption of a pushbutton
to the value in a variable called “buttonTitle”. The example
below accomplishes that:

Pushbutton1.Caption=buttonTitle

Conversely, if you wanted to store the value of a property (like
the pushbutton’s caption in the last example) in a variable, you
would simply reverse the syntax:
BASIC Programming Concepts 9

BASIC Programming Concepts

10

buttontitle=pushButton1.Caption

Like properties, variables have data types. Before you can use a
variable, it’s data type must be made known using the Dim state-
ment. Dim is short for Dimension which means to make space for
the variable. In the example below, the variable i is dimensioned
(or dimed) as an integer:

Dim i as integer

If you have several variables of the same type, you can declare
them all with one Dim statement:

Dim i,j,k as integer

You already know about the data types Integer, String, Boolean,
Single and Double. But variables can also be declared as specific
object types. For example, REALbasic has an object type called a
FolderItem. A FolderItem can represent any item that can exist in
a folder on the desktop (file, application or another folder). To
store a FolderItem object, you must first declare a variable of type
FolderItem as in this example:

Dim f as FolderItem

In this case, f is now an object with properties. One of the prop-
erties of a FolderItem is it’s name which is the name of the file,
application or folder that the FolderItem represents. The variable
f’s name property could then be assigned to say, variable n like
this:

n=f.name
Building a User Interface

Storing Values in Properties and Variables

The Dim statement creates the variable but when does the vari-
able get erased from memory? You will find out the answer to
that question in the next chapter.

Just like properties, you can only assign values to variables that
are compatible with the variable’s data type. The last line of the
following example generates an error because the types don’t
match:

Dim x as integer

Dim y as string

x=1

y="Hello"

z=x+y

In the example above x is a number and y is a string. An error is
generated because you can’t add different data types together.

Mathematical Operators
Performing mathematical calculations is a very common task in
programming. REALbasic supports all of the common mathemat-
ical operations.

Operation Performed Operator Example

Addition + 2 + 3 = 5

Subtraction - 3 - 2 = 1

Multiplication * 3 * 2 = 6

Floating Point Division / 6 / 4 = 1.5

Integer Division \ 6 \ 4 = 1

Modulo Mod 6 Mod 3 = 0

6 Mod 4 = 2
BASIC Programming Concepts 11

BASIC Programming Concepts

12

There are also many built-in mathematical functions. See the Lan-
guage Reference for more information.

REALbasic supports standard mathematical precedence. This
means that equations surrounded by parens are handled first.
REALbasic will begin with the set of parens that is embedded
inside the most other sets of parens. Next any addition or sub-
traction from left to right is performed. Finally any multiplication
or division is performed. In the example below, the three equa-
tions return different results because of the placement of parens:

Reserved Words
The following words should not be used as variable names
because they are used as part of the REALbasic language itself:

Executing Instructions with
Methods
A method is simply one or more instructions that are performed
for the purpose of accomplishing a specific task. REALbasic has
many built-in methods. For example, the Quit method will cause
your application to exit back to the Finder. Some object types
(classes) have built-in methods. For example, the ListBox class has
a method called AddRow for adding rows to a ListBox (as the
name implies). You can also create your own custom methods.
Just like variables, methods are given names to describe them

Equation Result

2+3*(5*3) 75

2+(3*(5*3)) 47

2+(3*5)*3 51
Building a User Interface

Executing Instructions with Methods

and the same rules apply: the name can be any length, but must
start with a letter and can contain only alphanumeric values (a-z,
A-Z, 0-9).

Below is an example of a simple method that calculates how
many days old a person is in 1998 who was born in 1960:

Dim yearBorn, thisYear, daysOld as Integer

yearBorn=1960

thisYear=1998

daysOld=(thisYear-yearBorn)*365

Methods can of course be far more complex and longer than this
example. There are three different places you can put your code.
You will learn about these in the next chapter.

Documenting (Commenting) Your Code
Documenting your code is important because while it might
make sense at the time you write it, it may not make sense days
or weeks later. Also, if someone else has to understand your
methods, documentation will make their job a whole lot easier.
Comments can be added to your code as separate lines or to the
right of any code on an existing line. Comments are ignored by
REALbasic when it runs your application and have no impact on
performance. In order for REALbasic to ignore your comments,
you must start the comment with a hyphen (‘), two forward
slashes (//) or the word REM (short for reminder). The example
below shows how the previous example could be commented:

//Create the necessary variables

Dim yearBorn, thisYear, daysOld as Integer

yearBorn=1960 //set the year they were born
BASIC Programming Concepts 13

BASIC Programming Concepts

14

thisYear=1998 //store the current year

//Now calculate the number of days old

daysOld=(thisYear-yearBorn)*365

Comments in your code will automatically appear in red.

Passing Values to Methods
Some of REALbasic’s built-in methods require one or more pieces
of information to perform their function. These pieces of infor-
mation are called parameters. Parameters are passed to a method
placing them to the right of the method name in your code. In
the example below, the AddRow method of a listBox called
ListBox1 is being called. AddRow requires one parameter which is
the text that should be displayed in the new row:

ListBox1.AddRow "January"

If a method requires more than one parameter, commas are used
to separate them. The ListBox class has a method called Inser-
tRow which is used to insert new rows into a ListBox at any posi-
tion. The InsertRow method requires two values: the row number
where the new row should appear and the text value that should
be displayed in the new row. Because more than one parameter
is required, the parameters are separated by commas:

ListBox1.InsertRow 3, "January"

Parameters can also be variables. If a variable is passed as a
parameter, it is the current value of the variable that is passed. In
the example below, a variable is assigned a value then passed as
a parameter:

Month="January"
Building a User Interface

Executing Instructions with Methods

ListBox1.InsertRow 3, Month

In the next chapter, you will learn how to define parameters for
your own custom methods.

Returning Values from Methods
Some methods return values. This means that a value is passed
back from the method to the line of code that called the method.
For example, REALbasic’s built-in method, Ticks, returns the num-
ber of ticks (60th’s of a second) that have passed since you
turned on your computer. You can assign the value returned by a
method the same way you assign a value. In the example below,
the value returned by Ticks is assigned to the variable x:

x=Ticks

Some methods require parameters and return a value. For exam-
ple, the Chr method returns the character whose ASCII code is
passed to it. When you pass parameters to a method that returns
a value, the parameters must be enclosed in parens. In the exam-
ple below, the Chr method is passed 13 (the ASCII code for a car-
riage return) and returns a carriage return to the variable x:

x=Chr(13)

The parens are required because the value returned might be
passed as a parameter to yet another method. Without the
parens, it would be difficult to distinguish which parameters
where being passed to the which method. In the example below,
the numeric value returned by the Len method (which returns the
number of characters in the string passed to it) is then passed to
the Str method (which converts a numeric value to a string). The
string returned by the Str method is then passed as a parameter
to the InsertRow method of a Listbox:
BASIC Programming Concepts 15

BASIC Programming Concepts

16

ListBox1.InsertRow 3, Str(Len("Hello"))

Methods that return a value are also referred to as functions. In
the REALbasic Language Reference, the names of methods that
return a value are followed by the word function. In the next
chapter, you will learn how to return values from your own cus-
tom functions.

Comparison Operators
There are many times when you need to compare two values to
determine whether or not a particular condition exists. When
making a comparison, what you are really doing is making a
statement that will either be true or false. For example, the state-
ment “My dog is a cat” evaluates to false. However, the state-
ment “My dog weighs more than my cat” may evaluate to true.
The table below shows examples of the comparison operators
that are available:

String and boolean values can also be used for comparisons.
String comparisons are case insensitive and alphabetical. This
means that “Jannice” and “jannice” are equal. But “Jannice” is
less than “Jason” because “Jannice” falls alphabetically before

Description Symbol
Numeric
Example Evaluates To

Equality = 5=5 True

Inequality <> 5<>5 False

Greater Than > 6>5 True

Less Than < 6<5 False

Greater Than or Equal
To

>= 6>=5 True

Less Than or Equal To <= 6<=5 True
Building a User Interface

Executing Instructions Repeatedly with Loops

“Jason”. If you need to make case sensitive or lexicographic com-
parisons, See “StrComp Function” on page 101 of the Language
Reference.

Testing Multiple Comparisons
You can test more than one comparison at a time using the And
and Or operators.

And Operator

Use this operator when you need to know if all comparisons eval-
uate to true. In the example below, if the variable x is 5 then the
expression evaluates to false:

x>1 And x<5

Or Operator

Use this operator when you need to know if any of the compari-
sons evaluate to true. In the example below, if the variable x is 5
then the expression evaluates to true:

x>1 Or x<5

Executing Instructions
Repeatedly with Loops
There may be times when one or more lines of code as a group
will need to be executed more than once. If you know how many
times the code should execute, you could simply repeat the code
that many times. For example, if you wanted a pushbutton to
BASIC Programming Concepts 17

BASIC Programming Concepts

18
beep three times when clicked, you could simply put the Beep
method in your code three times like this:

Beep

Beep

Beep

But say you need it to beep fifty times or perhaps until a certain
condition is met? Simply repeating the code over and over in
these cases will either be just tedious or not possible. How do you
solve this problem? The answer is a loop.

Loops are design to allow one or more lines of code to execute
over and over again.

While...Wend
A While loop is designed to execute one or more lines of code
between the While and the Wend (While End) statements. The
code between these statements will be executed repeatedly pro-
vided that the condition passed to the While statement continues
to evaluate to true. Consider the following example:

Dim n As Integer

While n<10

 n=n+1

 Beep

Wend

The variable “n” will be zero by default when it is created by the
Dim statement. Because zero is less than ten, execution will move
inside the While...Wend loop. The variable n is incremented by
Building a User Interface

Executing Instructions Repeatedly with Loops
one. The Beep method plays the alert sound. REALbasic checks to
see if the condition is still true and if it is, then the code inside the
loop executes again. This continues until the condition is no
longer true. If the variable n was not less than ten in the first
place, execution would continue at the line of code after the
Wend statement.

Do...Loop
Do loops are similar to While loops but a bit more flexible. Do
loops continue to execute all lines of code between the Do and
Loop statements until a particular condition is true. While loops
on the other hand execute as long as the condition remains true.
Do loops provide more flexibility than While loops because they
allow you to test the condition at the beginning or end of the
loop. The example below shows two loops; one testing the con-
dition at the beginning and the other testing it at the end:

Do Until n=10

 n=n+1

 Beep

Loop

Do

 n=n+1

 Beep

Loop Until n=10

The difference between these two loops is that in the first loop,
the loop will not execute if the variable n is already equal to ten.
The second loop will execute at least one time regardless of the
BASIC Programming Concepts 19

BASIC Programming Concepts

20
value of n because the condition is not tested until the end of the
loop.

It is possible to create a Do loop that does not test for any condi-
tion. Consider this loop:

Do

 n=n+1

 Beep

Loop

Because there is no test, this loop will run endlessly. You can call
the Exit method to force a loop to exit without testing for a con-
dition. However, this is poor design because you have to read
through the code to figure out what will cause the loop to end.

Endless Loops

Make sure that the code inside your While and Do loops eventu-
ally causes the condition to be satisfied. Otherwise, you will end
up with an endless loop that runs forever. Should you do this
accidently, you can attempt to switch back to the Design environ-
ment by clicking on one of the Design environment’s windows.
Then you can choose Debug ➞ Kill (1-K) to stop the loop. If this
doesn’t work, you will need to force REALbasic to quit by press-
ing 1-Control-Escape.

For...Next
While and Do loops are great when the number of times the loop
should execute cannot be determined because it’s based on a
condition. A For loop is for those times when you can determine
the number of times to execute the loop. For example, say you
Building a User Interface

Executing Instructions Repeatedly with Loops
want to add the numbers one through ten to a ListBox. Since you
know exactly how many times the code should execute, a For
loop is the right choice. For loops also differ from While and Do
loops because For loops have a loop counter variable, a starting
value for that variable and an ending value. The basic construc-
tion of a For loop is:

Dim counter As Integer

For counter=startingValue to endingValue

 [you code goes here]

Next

Notice the Dim statement is declaring counter as an integer. This
is because the counter variable in a For loop must be an integer.
The first time through the loop, counter variable will be set to
startingValue. When the loop reaches the Next statement, the
counter variable will be incremented by one. When the Next
statement is reached and the counter variable is equal to end-
ingValue, the counter will be incremented and the loop will end.

Let’s take a look at the example mentioned earlier. You want to
add the numbers one through ten to a ListBox. The following
example accomplishes that:

Dim i As Integer

For i=1 to 10

 ListBox1.AddRow Str(i)

Next

The counter variable (i in this case) is passed to the Str function to
be converted to a string so that it can be passed to the AddRow
method of ListBox1.
BASIC Programming Concepts 21

BASIC Programming Concepts

22
Note: The letter “i” is commonly used for a loop counter because it’s short for
iteration.

While For loops, by default, increment the counter by one, it can
be incremented (or decremented) by other values using the Step
statement. In this example, the Step statement is added to incre-
ment the counter variable by 5 instead of 1:

Dim i As Integer

For i=5 to 100 Step 5

 ListBox1.AddRow Str(i)

Next

In this example, the For loop starts the counter at 100 and decre-
ments by 5:

Dim i As Integer

For i=100 to 1 Step -5

 ListBox1.AddRow Str(i)

Next

A For loop (as well as any other kind of loop) can have another
loop inside it. In the case of a For loop, the only thing you will
have to watch out for is making sure that the counter variables
are different so that the loops won’t confuse each other. The
example below uses a For loop embedded inside another For
loop to go through all the cells of a multi-column ListBox count-
ing the number of items the word “Hello” appears:

Dim row, column, count As Integer

For row=0 to listBox1.ListCount-1

 For column=0 to listBox1.ColumnCount-1
Building a User Interface

Making Decisions with Branching
 if listbox1.cell(row,column)="hello" then

 count=count+1

 End if

 Next

Next

MsgBox Str(count)

For loops are generally more efficient than Do and While loops
because the condition that will cause the loop to exit is only
tested once at the beginning of the loop rather than each time
through the loop.

Making Decisions with Branching
The methods you write execute one line at a time from top to
bottom, left to right. There will be times when you want your
application to execute some of it’s code based on certain condi-
tions. When your application’s logic needs to make decisions it’s
called branching. This allows you to control what code gets exe-
cuted and when. REALbasic provides two branching statements:
If...Then and Select...Case.

If...Then...End If
This statement is used when your code needs to test a single
boolean (true or false) condition and then execute code based on
that condition. If the condition you are testing is true, then the
lines of code you place between the If...Then line and the End If
line are executed.
BASIC Programming Concepts 23

BASIC Programming Concepts

24
If condition Then

 [Your code goes here]

End If

Say you want to test the integer variable month and if it’s value is
1, execute some code:

If month=1 Then

 [Your code goes here]

End If

month=1 is a boolean expression; it’s either true or false. The
variable month is either 1 or it’s not 1.

Say you have a pushbutton that should perform an additional
task if a particular checkbox is checked. The value property of a
checkbox is boolean so you can test it in an If statement easily:

If checkbox1.value Then

End If

If...Then...Else...End If

There may be times when you need to perform one action if the
boolean condition is true and another if it’s false. In these cases,
you can use the optional Else clause of an If statement. The Else
clause allows you to divide up the code to be executed into two
sections: the code that should be executed if the condition is true
and the code that should be executed if it’s false. In this example,
one message is displayed if the condition is true while another is
displayed if it’s false:
Building a User Interface

Making Decisions with Branching
If month=1 Then

 MsgBox "It’s January."

Else

 MsgBox "It’s not January."

End If

If...Then...ElseIf...End If

There may be times when you need to perform an additional test
should the initial condition be false. In this case, use the optional
ElseIf statement. In the example below, if the variable month is
not 1 then the ElseIf statement is called to perform an additional
test:

If month=1 Then

 MsgBox "It’s January."

ElseIf month<4 Then

 MsgBox "It’s still Winter."

End If

You could of course, use an additional If...Then...EndIf statement
inside the Else portion of the first If statement to perform another
test but this would add another EndIf and needlessly complicate
your code. You can use as many ElseIf statements as you need. In
this example, another ElseIf has been added to perform an addi-
tional test:

If month=1 Then

 MsgBox "It’s January."

ElseIf month<4 Then

 MsgBox "It’s still Winter."
BASIC Programming Concepts 25

BASIC Programming Concepts

26
ElseIf month<6 Then

 MsgBox "It must be Spring."

End If

Should the initial condition be false, REALbasic will continue to
test the ElseIf conditions until it finds one that is true. It will then
execute the code associated with that ElseIf statement and then
continue with the line of code that follows the End If statement.

Select...Case
When you need to test a property or variable for one of many
possible values and then take action based on that value, use a
Select...Case statement. Consider the following example that
tests a variable (dayNumber) then displays a message to the user
to tell them which day of the week it is:

If dayNumber=2 Then

 MsgBox "It’s Monday."

ElseIf dayNumber=3 Then

 MsgBox "It’s Tuesday."

ElseIf dayNumber=4 Then

 MsgBox "It’s Wednesday."

ElseIf dayNumber=5 Then

 MsgBox "It’s Thursday."

ElseIf dayNumber=6 Then

 MsgBox "It’s Friday."

Else

 MsgBox "It’s the weekend."
Building a User Interface

Making Decisions with Branching
End If

No two of these conditions can be true at the same time. While
this method of writing the code will work it’s not that easy to
read. In this example, the same code is presented in a
Select...Case statement making it far easier to read:

Select Case dayNumber

Case 2

 MsgBox "It’s Monday."

Case 3

 MsgBox "It’s Tuesday."

Case 4

 MsgBox "It’s Wednesday."

Case 5

 MsgBox "It’s Thursday."

Case 6

 MsgBox "It’s Friday."

Else

 MsgBox "It’s the weekend."

End Select

The Select...Case statement compares the variable or property
passed in the first line to each case value. Once a match is found,
the code between that case and the next is executed.
Select...Case statements can contain an Else statement to handle
all other values not explicitly handled by a case.
BASIC Programming Concepts 27

BASIC Programming Concepts

28
The Select...Case statement supports string and integer compari-
sons only. If you need to compare boolean, single or double val-
ues, or if you need to use a comparison operator other than the
equality operator (=), use an If statement.
Building a User Interface

	CHAPTER 1 BASIC Programming Concepts
	Contents
	BASIC versus REALbasic
	Storing Values in Properties and Variables
	What are Properties?
	Variables
	Data Types
	String
	Integer
	Single
	Double
	Boolean
	Other Data Types

	Changing a Value From One Data Type to Another
	Assigning Values to Properties
	Getting Values From Properties
	Getting and Setting Values in Variables
	Mathematical Operators
	Reserved Words

	Executing Instructions with Methods
	Documenting (Commenting) Your Code
	Passing Values to Methods
	Returning Values from Methods

	Comparison Operators
	Testing Multiple Comparisons
	And Operator
	Or Operator

	Executing Instructions Repeatedly with Loops
	While...Wend
	Do...Loop
	Endless Loops
	For...Next

	Making Decisions with Branching
	If...Then...End If
	If...Then...Else...End If
	If...Then...ElseIf...End If

	Select...Case

